Ocean observations near and beneath West Antarctic ice shelves: warm and cold ocean modes followed by Ocean and coupled dynamics controls on the spatio-temporal

variability of ice shelf melt in the Amundsen Sea

<u>Pierre Dutrieux¹ Adrian Jenkins², and many, many others</u>

¹Lamont-Doherty Earth Observatory of Columbia University, New York, USA ²British Antarctic Survey, NERC, Cambridge, UK

Near seabed water temperature [Schmitdko *et al*, 2014]

Near seabed water temperature [Schmitdko *et al*, 2014] -2

← Terra Nova Bay ice shelves

← Amundsen Sea ice shelves

'Warm' case: observations in the Amundsen Sea

Photo C Maria Stenzel

2009 and 2014 missions

Upgraded geometry

[Dutrieux et al, 2014; Muto et al, 2016; McMillan et al, 2017]

Upgraded scenario for ice shelf retreat

[[]Smith *et al*, 2016]

1.5

1

15 12.5 10 7.5 5 2.5 0 ml/l

0

[Dutrieux et al., 2014]

600

800 ·

Net melt volume loss rates from the main trunk:

1994: -51±7 km³/yr 2009: -80±10 km³/yr 2010: -75±10 km³/yr 2012: -37±5 km³/yr ! 2014: -65±5 km³/yr

- Ocean circulation tightly controlled by cavity geometry under the ice shelf;
- Vigorous melt-induced circulation, reaching upwards of 50 cm/s;
- Variable ocean heat content modulates ice shelf melt;

'Warm' case: observations in the Amundsen Sea

Photo C Maria Stenzel

© Photo: Pierre Dutrieux

© Photo: Pierre Dutrieux

© Photo: Pierre Dutrieux

© Photo: Fiona Elliot

Temporal variability

Temporal variability, repeat and yoyo

- In Terra Nova Bay, minimal heat content reduced to effect of pressure on freezing point;
- Meltwater distribution traced as supercooled water, focused on ice shelves calving fronts;
- Tidal/inertial/high frequency modulation of meltwater outflow;
- Gale wind event impacts sea-ice formation and upper ocean properties;

Ocean observations near and beneath West Antarctic ice shelves: warm and cold ocean modes followed by

Ocean and coupled dynamics controls on the spatio-temporal variability of ice shelf melt in the Amundsen Sea

<u>Pierre Dutrieux¹ Adrian Jenkins², and many, many others</u>

¹Lamont-Doherty Earth Observatory of Columbia University, New York, USA ²British Antarctic Survey, NERC, Cambridge, UK

The Amundsen Sea

2

1.5

1

0.5

0

-0.5

-1

[Webber et al., 2017]

Cause(s) of the variability?

[*Webber et al.*, 2017]

[Kimura et al., submitted]

- Amundsen Sea heat content varies at seasonal to interannual time-scales;
- At seasonal time scales, local air/sea-ice buoyancy forcing plays a large role;
- At interannual time scales, continental shelf edge exchanges play a large role;
- All remains to be quantified by observations...

Impact on the glacier?

Geometrical constraints on dynamics

Impact on the ice? Maybe recently...

- Short term covariability of ocean and ice shelf observed once, but...
- No clear link between the expected oceanic variability and the ice shelf response!
 - > coupled dynamics is the next frontier

Ice base geometry

A detailed pattern of melt

d

101⁰W

30'

80 60 40

20 0 m/yr

30'

100⁰W

Oceanic melt

[Dutrieux et al., 2013]

A detailed pattern of melt

2009-2014 Median Melt Rate (m/yr)

[[]Dutrieux et al., 2013]

How about even finer scale? Shear margin crevasses

How about even finer scale? Transverse channels

How about even finer scale? Longitudinal channels

Impact on the ice?

a. Undeformed ice shelf

b. Flexing response

c. Zones of possible failure

from Vaughan et al, JGR 2012

[Shean et al., in prep]

135 120 (8002W53 m) 90 (8002W53 m) 90 (8002W53 m) 45 (8002W53 m) 4

150

How about even finer scale?

Terraces

- Interesting geometries at the ice/ocean interface
- Melt tightly associated to this geometry
- Ocean-ice coupling is operating over a broad range of scales!

Thanks for your undivided attention!