Photo credit: Steve Nicholls

Ocean Interactions with the Antarctic Ice Shelves In East Antarctica

Laura Herraiz–Borreguero, National Oceanographic Centre-Southampton, UK Peter Schlosser and Robert Newton, LDEO, USA Steve Rintoul, Beatriz Peña-Molino, ACECRC, Australia

- 1. East Antarctic ice shelves
- 2. Amery ice shelf
- 3. Meltwater tracers: noble gases

Fig. 1 Basal melt rates of Antarctic ice shelves.Color coded from <-5 m/year (freezing) to >+5 m/year (melting) and overlaid on a 2009 Moderate Resolution Imaging Spectroradiometer mosaic of Antarctica.

Rignot et al., 2013

Pritchard et al., 2012

Fig. 1 Eighteen years of change in thickness and volume of Antarctic ice shelves.Rates of thickness change (m/decade) are color-coded from -25 (thinning) to +10 (thickening).

Paolo et al., 2015

SPECIAL ISSUE ON OCEAN-ICE INTERACTION

Ocean-Ice Shelf Interaction in East Antarctica

By Alessandro Silvano, Stephen R. Rintoul, and Laura Herraiz-Borreguero

> Silvano, Rintoul and Herraiz-Borreguero Oceanography 29(4):130–143, https://doi.org/10.5670/oceanog.2016.105.

SPECIAL ISSUE ON OCEAN-ICE INTERACTION

Ocean-Ice Shelf Interaction in East Antarctica

By Alessandro Silvano, Stephen R. Rintoul, and Laura Herraiz-Borreguero

Mertz Glacial Tongue

Water properties of the strongest inflow to ice-shelf cavities in East and West Antarctica.

Instrumented marine mammals (high <u>spatial</u> and temporal coverage)

Herraiz-Borreguero et al., 2015; 2016

ШÛ

0

오

U.S./Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica

www.soos.aq, Xiaojun Yuan (LDEO)

Warner et al., IGS 2016

Prydz Bay-Amery ice shelf system: what do we know ?

Eastern Side: Mode 1 and 2 overlap during the autumn-winter months

Western side: Mode 1 dominates the circulation beneath the AIS

Herraiz-Borreguero et al., 2015; 2016

Prydz Bay-Amery ice shelf system: mCDW inflow and coastal current

In regional scales, conservation of potential vorticity causes the flow to follow contours of constant depth. Thus, the ice shelf constitutes a barrier for the flow to enter the ice shelf cavity.

Eddies and coastally-trapped waves

Wavelet analyses of PBM1, at 740 m

1 0 7

А

J

J

34.2

Μ

S

C. Darnley

Williams et al., 2016

Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica

Helium (^{3,4}He), a good tracer of glacial melt water

The low solubility of helium and neon in seawater results in **concentrations well above solubility equilibrium with the atmosphere** (the primary source of helium and neon in the ocean), producing a glacial melt signal which can be traced from an ice front, across the continental shelf and into the abyssal ocean.

⁴He: Nuclear reactions in rocks and sediments From the decay of U and Th, geothermal Activity, volcanic eruptions (e.g. high [⁴He] are common in deep ground water discharge)

³He: Radioactive decay of atmospheric tritium

Schlosser, 1986

Hahm et al., 2004

RIS: Palmer 2000 section

Schlosser et al., in prep.

Helium isotope sections

AS2K section from Station 1 (77 S 163 E) to 20 (78S 160W)

Distinct ⁴He excesses in ISW cores; larger than Ne excesses

AS2K section from Station 1 (77 S 163 E) to 20 (78S 160W)

δ³He signals related to ⁴He excesses in ISW cores indicate addition of terrigenic helium of crustal origin

Schlosser et al., in prep.

Terrigenic helium signal

We can use this data to quantify the contribution of the subglacial freshwater contribution to the observed meltwater plume exiting the ice shelves cavities

Schlosser et al., in prep.

Mertz Glacial Tongue

Herraiz-Borreguero et al., in prep.

Circumpolar Deep Water (CDW) Antarctic Bottom Water (AABW) Ice Shelf Water (ISW)

Cruise stations

Para- meter	Mean f _{MGW} (±1std) per mil	Max f _{MGW} Per mil	AABW f _{MGW} Per mil	
2011 MC, θ, S, ¹⁸ O	1.88 ± 1.73	6.57	1.56	18
2001 MC, θ, S, ¹⁸ O	$\begin{array}{c} 0.88 \pm \\ 0.72 \end{array}$	4.00	0.6	

Herraiz-Borreguero et al., in prep.

Conclusions

- 1. Need more work on how currents interact with ice shelves fronts and what it means for the inflow of waters
- 2. Polynyas:
 - 1. ocean stratification matters
 - 2. Freshwater can actually hamper the formation of dense shelf waters
- 3. Noble gases gives us information on the source of the glacial freshwater and how this freshwater is exported
- 4. It can inform models

AIS: Amery ice shelf TIS: Totten ice shelf MGT: Mertz Glacial Tongue

Silvano, Rintoul and Herraiz-Borreguero, 2016

Silvano, Rintoul and Herraiz-Borreguero, 2016

SLOPE

Silvano, Rintoul and Herraiz-Borreguero, 2016

Silvano, Rintoul and Herraiz-Borreguero, 2016

mCDW is responsible for up to 2 ± 0.5 m yr⁻¹ during 2001 (23.9 ±6.52 Gt yr⁻¹). However, heat content flux by mCDW at AM02 shows high intra-annual variability (up

Month

Prydz Bay-Amery ice shelf system: what do we know ?

Table 2. Summary of the Most Recent Estimates of Net Basal MeltBeneath the Amery Ice Shelf

Study	Net Basal Melt (m yr ⁻¹)	Net Basal Mass Loss (Gt yr ⁻¹)
This study + <i>Herraiz-Borreguero</i> et al. [2015] ^{a,b}	1.0 ± 0.4	57.4 ± 25.3
Depoorter et al. [2013] ^c	0.65 ± 0.35	39 ± 21
<i>Rignot et al.</i> [2013] ^c	0.58 ± 0.4	35.5 ± 22
Galton-Fenzi et al. [2012] ^d	0.74	45.6
<i>Yu et al.</i> [2010] ^c	0.5 ± 0.12	27 ± 7
Wen et al. [2010] ^c	$\textbf{0.84} \pm \textbf{0.12}$	$\textbf{46.4} \pm \textbf{6.9}$

^aOceanographic study.

^bHas been adjusted to give a net basal melt estimate in m/yr over the whole ice shelf area.

^cGlaciological study.

^dModeling study.

Glacial Melt Water composition: Optimal MultiParameter (OMP) analysis

E: matrix of end-members properties x: vector of unkowns (f) y: observations

L least square method to resolve our system.

4 water masses used (or end-members):

- 1. Circumpolar Deep Water (CDW)
- 2. Antarctic Surface Water (AASW)
- 3. Dense Shelf Water (DSW)
- 4. Glacial Melt Water (GMW)

4-5 parameters: Mass conservation, Potential temperature (θ), salinity (S), ¹⁸O & ⁴He conc. contribution of the 4 water masses; f1, f2, f3 and f4

We are not using the data at the top 200 m of the water column

Glacial Melt Water composition:

Cruise 2011

Parameters	Mean fG _{MW} (±1std) per mil	Maximum f_{GMW} Per mil
MC, θ, S, ¹⁸ O, ⁴ He	1.22 ± 1.04	4.46
MC, θ, S, ¹⁸ Ο	1.88 ± 1.73	6.57
MC, θ, S, ⁴ He	1.21 ± 1.07	4.91
MC, θ, ¹⁸ O, ⁴ He	2.20 ± 1.74	6.69
MC, S, ¹⁸ O, ⁴ He	1.46 ± 1.04	4.78
L		

ISW $f_{MGW} = 6.57$ per mil AABW $f_{MGW} = 1.56$ per mil

GMW fractions, fluxes and melt rates

	Ross	Weddell Sea	
	Deep ISW core	Shallow ISW core	Deep ISW (WSW/ISW)
Salinity	4.3 ‰	4.8 ‰	2.9 ‰
Neon	3.9 ‰	4.9 ‰	3.8 – 7 ‰ (⁴ He)
δ ¹⁸ Ο	3.9 ‰	4.6 ‰	2.8 - 6 ‰

No sign for re-freezing underneath the RIS

Mean residence time: ca. 3.5 years (Bill Smethie) Deep core: ISW flux: ca. 0.1 Sv GMW flux: 0.4 mSv Melt rate for 100 km wide pathway: 0.1 m year⁻¹

Fig. 1. Mechanisms controlling the distribution of helium and neon in the arctic seas. Helium isotopes have four sources: the atmosphere, mantle, crust and decay of tritium; however, neon has only one, the atmosphere. Helium and neon can be applied to explore the processes which can change the concentration of atmospheric gases, such as air injection, brine injection, sea-ice melting and glacier melting.